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Abstract.—Species are commonly thought to be evolutionarily independent in a way that populations within a species
are not. In recent years, studies that seek to identify evolutionarily independent lineages (i.e., to delimit species) using
genetic data have typically adopted multispecies coalescent approaches that assume that evolutionary independence is
formed by the differential sorting of ancestral alleles due to genetic drift. However, gene flow appears to be common among
populations and nascent species, and while this process may inhibit lineage divergence (and thus independence), it is usually
not explicitly considered when delimiting species. In this article, we apply Phylogeographic Inference using Approximate
Likelihoods (PHRAPL), a recently described method for phylogeographic model selection, to species delimitation. We
describe an approach to delimiting species using PHRAPL that attempts to account for both genetic drift and gene flow, and
we compare the method’s performance to that of a popular delimitation approach (BPP) using both simulated and empirical
datasets. PHRAPL generally infers the correct demographic-delimitation model when the generating model includes gene
flow between taxa, given a sufficient amount of data. When the generating model includes only isolation in the recent
past, PHRAPL will in some cases fail to differentiate between gene flow and divergence, leading to model misspecification.
Nevertheless, the explicit consideration of gene flow by PHRAPL is an important complement to existing delimitation
approaches, particularly in systems where gene flow is likely important. [approximate likelihoods; coalescent simulations;
genealogical divergence index; Homo sapiens; isolation-with-migration; multispecies coalescent; Sarracenia; Scincella.]

Species are a foundational unit of analysis in biology.
Whether the goal is to retrace the evolution of traits on
a phylogenetic tree or to prioritize taxonomic groups
that are most in need of special management status,
inferences from the fields of evolutionary biology,
ecology, and conservation depend on how species units
are defined. Despite this practical importance, assigning
groups of organisms to species—species delimitation—
is one of the most challenging objectives of phylogenetic
and population genetic research (Coyne and Orr 2004).
This is in large part because most biologists consider
species to be separate evolutionary lineages but often
disagree regarding the best criteria for recognizing them
(de Queiroz 2007). In addition, some of these criteria,
such as reproductive isolation can be difficult to establish
in many taxa.

Multilocus genetic data provide a powerful line
of evidence for delimiting species by allowing us
to identify distinct evolutionary lineages within a
sample (Fujita et al. 2012). In recent years, several
analytical approaches have been developed that use
coalescent models (Kingman 1982; Rannala and Yang
2003) to infer the most probable model of species
limits given a multilocus dataset (e.g., Knowles and
Carstens 2007a; O’Meara 2010; Yang and Rannala 2010;
Ence and Carstens 2011; Grummer et al. 2014; Jones
et al. 2015). While the specifics of these methods
vary, all identify independent lineages by modeling
the differential sorting of ancestral alleles in isolated
populations due to genetic drift. When genetic drift
is the primary evolutionary process that influences
allele frequencies, simulation results suggest that these
methods can accurately delimit species in many cases

(e.g., Camargo et al. 2012; Rittmeyer and Austin 2012).
However, the evolutionary process of gene flow should
also be explicitly considered when inferring species
limits (e.g., Ence and Carstens 2011; Camargo et al.
2012), as this process (like incomplete lineage sorting)
can result in shared polymorphism across lineages.
Gene flow can halt or reduce genetic divergence that
accumulates due to population isolation (Wright 1931),
and theoretical work shows that when this process
is present, but excluded from coalescent species tree
inference, phylogenetic accuracy can be reduced (Eckert
and Carstens 2008; Leaché et al. 2014). That divergence
with gene flow has been observed in multiple groups
(Pinho and Hey 2010) suggests that the accuracy of
species delimitation methods may also decline when
ongoing gene flow is ignored (e.g., Ence and Carstens
2011; Camargo et al. 2012).

In large part due to the computational complexity
introduced by adding migration parameters to the
already complex models used in species delimitation,
it has thus far only been possible to consider gene flow
using customized modeling in an ABC approach (e.g.,
Camargo et al. 2012). Thus, the current strategy taken
by most researchers is either to ignore gene flow when
delimiting species or to infer species boundaries and
rates of gene flow (and often, the species tree) in separate
steps. While these approaches may work well in some
systems (e.g., Zhang et al. 2011; Camargo et al. 2012;
Heled et al. 2013; Burbrink and Guiher 2015), given
covariance among the species phylogeny (including
divergence times), species boundaries, and migration
rates, these parameters would ideally be estimated in
a single analysis.
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Jackson et al. (in press) have proposed an
analytical framework (Phylogeographic Inference using
Approximate Likelihoods; PHRAPL) for exploring the
relative fit of phylogeographic datasets to a broad and
flexible model space. By analyzing gene tree topologies
rather than full sequence datasets, PHRAPL is able
to consider a large number of complex models that
incorporate gene flow in addition to other parameters
involved in the speciation process, potentially making
the method well suited to inferring species limits.
PHRAPL estimates the likelihood of an observed
dataset under a particular demographic model by
first simulating a distribution of coalescent gene trees
under that model using the program ms (Hudson
2002). The inputted dataset consists of a set of gene
tree topologies along with a priori assignments of
individuals to populations or species. The demographic
model contains parameters that describe the timing of
coalescent events among populations (i.e., the species
tree), migration rates (M), population growth rates (g),
and/or differences in effective population size (�=4Ne).
All parameters can be specified among tips and/or
ancestral populations. The proportion of simulated
gene tree topologies that match the observed gene tree
is then used to approximate the log-likelihood of the
model given the observed data. Because approximate
likelihoods can be calculated quickly by PHRAPL, a
large number of demographic models can be compared
and ranked using Akaike information criterion (AIC),
facilitating model selection. PHRAPL also optimizes
parameters for each model by estimating log-likelihoods
across a user-specified grid of values (called a “grid
search”), which contains all possible combinations of
values specified for each imposed parameter. Thus,
model selection (i.e., inferring the set of parameters) and
parameter optimization (i.e., inferring parameter values)
are conducted jointly. Simulations have demonstrated
that PHRAPL is generally effective at identifying the
optimal model given moderate amounts of data (e.g., on
the order of 10–100 loci), although parameter estimation
is not likely to be as accurate as with methods that
apply a Markov chain Monte Carlo (MCMC) approach
(Jackson et al. in press).

In this article, we extend PHRAPL to address the
challenge of delimiting species while accounting for
the possibility of gene flow. We first describe how
delimitation models can be constructed and compared
using PHRAPL, and then test the performance of this
approach using datasets simulated under a variety of
sizes, coalescent times, and migration rates. To illustrate
the application of PHRAPL to empirical data, we apply
the method to datasets from lizards and pitcher plants.
We also apply the method to humans, which we know to
comprise a single species, as a way to test for propensity
to Type 1 error (e.g., oversplitting). Finally, we compare
the performance of PHRAPL to that of a popular method
for species delimitation (BPP; Yang and Rannala 2010,
2015), which uses a full Bayesian framework for inferring
species, but which does not account for gene flow among
taxa.

METHODS

Specifying Delimitation Models in PHRAPL
If two sampled populations represent distinct

evolutionary lineages, then gene trees from these
populations are expected to better fit a model that
includes divergence among populations than a model
that excludes divergence (i.e., when t=0, where t is the
divergence time). Thus, in PHRAPL, which compares
the fit of gene trees to a set of demographic models,
nested species delimitation models can be constructed
from any given model of species history (i.e., species
tree) by systematically collapsing the nodes of the tree.
Similarly, non-nested species delimitation models can be
compared by first constructing nested sets of models
for different species histories (e.g., different species
trees) and then combining these models into a single
analysis. In this way, all possible species relationships
and species delimitations—both with and without
accompanying migration—can be compared using AIC
weights calculated for each model (e.g., Carstens and
Dewey 2010), although the practical number of models
considered may be limited by computational resources
and/or the patience of the researchers.

Simulation Testing
Performance of PHRAPL for species delimitation.—We used
simulated data to test the ability of PHRAPL to infer
the correct delimitation-migration model. We simulated
two rooted, three-species histories where (1) species A
and B coalesce at time tAB in the past, followed by
coalescence of ancestral species AB with species C at time
tABC (Fig. 1a) and where (2) the same branching history
above occurs, but with constant symmetrical migration
between species A and B until tAB (Fig. 1c). We simulated
20 individuals for each of the three populations. We also
simulated a two-species history where A and B were
merged, becoming a single evolutionary lineage in the
present (Fig. 1b). These simulated datasets allowed us
to assess rates of accuracy for PHRAPL. Specifically, we
inferred rates of false negatives (i.e., failing to detect two
species where two are present) and false positives (i.e.,
falsely inferring two species when the data have evolved
within a single lineage).

We varied model parameters to represent a wide
range of empirical systems for which the question of
species boundaries is relevant. We varied tAB across six
values: 0.05, 0.125, 0.25, 1, 2, and 4, where values are
in units of 4N (diploid effective population size), and
tABC was set to 2.5, 2.5, 2.5, 2.5, 5, and 10, respectively
(Fig. 1). For the two-species history tABC was set to 2.5.
We also varied migration, M (0.5, 2, 5, and 10), where
M is in units of 4Nm (the number of migrants per
generation), and varied the number of loci simulated per
dataset (1, 4, 10, and 50). Each treatment combination
(96 in total) was simulated 50 times using different
starting seeds. To approximate empirical sequence data,
we simulated genealogies using the program ms and
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FIGURE 1. Three histories underlying simulated datasets that were
analyzed using PHRAPL: a) taxa A and B diverged at time tAB in the
past; b) taxa A and B are a single panmictic lineage; and c) taxa A and
B diverged at time tAB in the past, but continued to share migrants at
rate M. In histories (a) and (c), species coalescent times tAB were varied
between 0.05 and 4 (shown in the shaded region), where times t are
in units of 4N. In history (c), M was varied between 0.5 and 10, where
M=4Nm. Note that the branch lengths preceding tABC in these trees
were adjusted according to the tABsimulated (see text); however, this
scaling is not shown here.

subsequently evolved DNA sequences along branches
using the program Seq-Gen (Rambaut and Grassly 1997).
Matching settings used in earlier simulation testing
(Knowles and Carstens 2007b; Ence and Carstens 2011),
sequences were evolved using the HKY model, 500 bp
per locus, base pair frequencies = 0.3, 0.2, 0.2, and 0.3
(for A, C, G, and T), and transition/transversion ratio= 3.
Two different levels of genetic diversity were simulated:
�=0.005 and 0.025. We then inferred gene trees from
sequence datasets using RAxML 7.2.6 with five replicate
searches, rapid hill-climbing, and the GTRGAMMA
model (Stamatakis 2006).

We constructed two sets of models to explore the
accuracy of PHRAPL in delimiting species using these
simulated datasets. The first model set (6 models)
contained the true underlying topological history, as well
as all other possible histories in which species A and
B were and were not collapsed into one (Fig. 2a, b). As
discussed above, two-species models were implemented
here as special cases of the three-species models, but
where tAB was set to zero. These models assume
that divergence occurs only due to processes taking
place within taxa (i.e., excluding migration) and are
equivalent to the models considered by BPP (Yang and
Rannala 2015). The second model set (9 models) included
all the models in the first model set plus the three
possible three-species histories to which symmetrical
migration was added between sister populations A and B
(Fig. 2a–c). Prior to model comparison using PHRAPL,
we randomly subsampled all datasets 10 times where
each subsample replicate included four tips per species
(12 tips per tree). Parameter optimization was performed
using a grid of values. We used eight values for t (0.10,
0.22, 0.46, 1.00, 2.15, 4.64, 10.00, and 15.00) and seven
values for M(0.10, 0.22, 0.46, 1.00, 2.15, 4.64, 10.00). We
set nTrees (the number of trees simulated per parameter
combination) to 10,000.
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FIGURE 2. The set of models fitted to simulated datasets using
PHRAPL. M=4Nm and t1 and t2 are population coalescent times in
units of 4N.

Comparing the performance of PHRAPL with that of BPP.—
We compared the performance of PHRAPL to that of
BPP, one of the leading software packages for species
delimitation under the multispecies coalescent model
(Yang and Rannala 2015). BPP uses a full Bayesian
approach with reversible-jump Markov chain Monte
Carlo to compare the fit of models positing different
ways of collapsing putative species to sequence data. A
recent extension of the method also allows for testing
delimitation hypotheses across different tree topologies,
such that species limits and relationships can be inferred
simultaneously (Yang and Rannala 2015). However,
unlike PHRAPL, BPP does not explicitly model gene
flow, although arguments have been put forward that
BPP nonetheless behaves well in the face of migration
(Zhang et al. 2011, 2014).

We analyzed all simulated datasets (treatments shown
in Fig. 1a–c) using BPP. For all datasets we placed
a gamma prior on �∼G (2, 400), with a mean equal
to our simulated value (�=0.005; the higher diversity
sequence dataset was not analyzed). Our prior on root
age was based on the simulated value for tABC, with
�∼G(2,160), �∼G(2,80), and �∼G(2,40) for tABC =2.5,
5, and 10, respectively. We allowed fine-tune parameters
to be automatically adjusted, enabled the nearest
neighbor interchange algorithm to allow inference of
the phylogeny, set the species model prior to zero, used
delimitation algorithm 0 (with default e value), and
sampled every two of 100,000 iterations after a burn-in
of 10,000 iterations. We analyzed each dataset 10 times
to assess consistency of results.
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Empirical Examples
Scincella lateralis.—We analyzed data from North
American ground skinks (Scincella lateralis) using
PHRAPL. Although S. lateralis is currently classified
as a single widespread species, recent phylogeographic
studies (Jackson and Austin 2010, 2012) suggest that the
species is composed of at least three cryptic parapatric
lineages (“Eastern,” “Central,” and “Western”, all largely
distributed in the southeastern United States). For this
dataset, as well as for the other empirical datasets
analyzed in this article, we followed the original papers
when assigning individuals to populations. The data
consists of eight nuclear loci (ranging from 442 to 837 bp)
collected from between 68 and 80 individuals. Maximum
likelihood trees were estimated using 10 replicate
searches of rapid hill-climbing using the GTRGAMMA
model in RAxML.

We assessed the fit of the skink data to 55 demographic
models (see these models in Supplementary Fig. S1,
available on Dryad at http://dx.doi.org/10.5061/
dryad.t8016) for three lineages. This model set included
all possible relationships and delimitation scenarios
without migration (7 models) and with symmetrical
migration (24 models). For models with migration, we
not only considered full migration models (migration
among all populations), but also all possible partial
migration scenarios (e.g., including a model with
migration only between Eastern and Western or a
model with migration between all populations except
Central and Eastern). As above, we also implemented
all isolation-with-migration (IM) models as secondary
contact models, where migration ceases after t=0.1 (24
models). We subsampled four tips per population, set
nTrees to 100,000, and performed 10 replicate analyses.
Grid values used were t=0.30, 0.58, 1.11, 2.12, 4.07 and
M=0.10, 0.22, 0.46, 1.00, 2.15, 4.64.

For comparison, we also analyzed the ground skink
dataset using BPP. We set the prior on root � to
G(2, 1000) and the prior on � was set to G(2, 400),
with a mean (0.005) equal to the estimated nucleotide
diversity for this group (Jackson and Austin 2010). All
other aspects of the analysis were kept the same as
used for the simulated datasets above except that we
sampled 500,000 iterations and increased burn-in to
50,000.

Sarracenia alata.—We also applied PHRAPL to sequence
data collected from pitcher plants distributed in the
southeastern United States (Sarracenia alata). Sarracenia
alata has traditionally been classified as a single species.
However, Carstens and Satler (2013) presented evidence
for the existence of two cryptic species corresponding
to two disjunct populations on opposite sides of the
Mississippi River near the Gulf Coast. We further
evaluate species limits here using PHRAPL. In addition
to including the two disjunct populations (“Eastern”
and “Western”), we also considered a third population,
previously inferred to be distinct using a STRUCTURE
analysis (Zellmer et al. 2012), as a putative lineage. This

population is isolated from other Western samples by
the Red River, which could act as a strong dispersal
barrier. Thus we analyzed this three-population dataset
(20 loci, ranging from 164 to 403 bp, from 80 samples,
averaging 47 samples per locus) with PHRAPL using the
same model set, grid, and analysis specifications used for
ground skinks.

We carried out a BPP analysis for S. alata using the
approach used for ground skinks except that the prior
on � was set to G(2, 500), with a mean equal to the mean
estimate of nucleotide diversity (�=0.004) calculated
using PopGenome (Pfeifer et al. 2014).

Homo sapiens.—There exists no agreed-upon threshold
of population divergence or migration beyond which
we define a group as one species or two (de Queiroz
2007). Consequently, it can be challenging to assess
the propensity of a species delimitation method to
oversplitting (e.g., to falsely delimiting structured
populations within a species). Whether a genetic pattern
signals biological species is in fact the question to which
we turn to delimitation methods for an answer, and
thus there tends to be some circularity to the testing
of delimitation methods using datasets for which we
know that divergence has occurred, but where we must
rely on the method to ascertain whether this amounts
to “species-level divergence.” One solution is to analyze
data from a system that contains population genetic
structure, but where this structure is well understood
to be intraspecific. Since there is no species that has been
the focus of more genetic investigation than our own,
we analyzed data from Homo sapiens as a sort of “sanity
check”: if PHRAPL delimits multiple species of humans,
this would be strong evidence that PHRAPL is overly
prone to Type 1 statistical error, where populations are
being wrongly split into species.

We thus applied PHRAPL to a human dataset
comprising DNA sequences from 50 loci (ranging
from 415 to 960 bp) available for four widely
sampled, geographically defined populations, from
which participants were identified as having heritage:
10 samples from Africa, 10 samples from Europe, 10
samples from Asia, and 12 samples from South and
Central America (Yu et al. 2002; Fagundes et al. 2007).
Here we simply use the full datasets and groupings of
the original studies. We chose this dataset as it was the
best available in terms of the sample sizes and number of
sequenced loci. It is important to point out that these four
groups are ethnically diverse and are not “populations”
in any biological sense. In fact, the major finding of the
paper from which most of these data originated was that
more genetic diversity exits within the African sample
than between samples (Yu et al. 2002) and it is well
understood that most non-African genetic diversity is
a subset of African diversity (Tishkoff and Kidd 2004;
Jakobsson 2008; Li et al. 2008). Thus, there is no question
that all the samples in these “groups” originate from a
single species, which is why this is a good dataset for
testing for Type 1 error in delimitation methods.

Downloaded from https://academic.oup.com/sysbio/article-abstract/66/5/799/2726792
by Preston Medical Library, UT Grad School of Medicine user
on 22 November 2017

http://dx.doi.org/10.5061/dryad.t8016
http://dx.doi.org/10.5061/dryad.t8016


2017 JACKSON ET AL.—SPECIES DELIMITATION WITH GENE FLOW 803

We aligned sequences using MUSCLE (Edgar 2004)
and inferred haplotype phase using PHASE 2.1.1
(Stephens et al. 2001). We inferred gene trees using
RAxML with 10 replicate searches, rapid hill-climbing,
and the GTRGAMMA model. Trees were rooted using
midpoint rooting. We analyzed 100 replicate subsamples
per locus, each subsample comprising three tips per
population. Our model set contained all possible
topologies and delimitation scenarios involving the
four populations, with and without full symmetrical
migration among the tips (87 models; see these models
in Supplementary Fig. S2). We based the range of grid
values used in these analyses on parameter estimates
from Fagundes et al. (2007), which were derived from
these datasets. The minimum coalescent time was set
to be the lower bound of the highest posterior density
(HPD) interval for the estimated time at which the
Americas were colonized (7647 years) divided by the
upper bound of the HPD interval for � within the
Native American population (13,740), the least diverse of
the populations (thus, tmin =T/4Ne =7647/[4∗13,740]=
0.14). Similarly, the maximum coalescent time was set to
be the upper bound of the HPD interval for the estimated
time at which humans dispersed from Africa (70,937
years) divided by the lower bound of the HPD interval
for � within the ancestral population (6604), prior to
diversification (tmax =70,937/[4∗6604]=2.69). We used
four grid values within this range (t=0.14, 0.38, 1.00,
2.69). We also selected four grid values for migration
(M=0.10, 0.27, 0.74, 2.00), which incorporate all median
Nm estimates from Fagundes et al. (2007). The analysis
was repeated 10 times, with nTrees set to 100,000 in all
runs.

We also analyzed the human dataset using BPP. We
used a � gamma prior of G(2, 2975) whose mean equals
the mean estimate of nucleotide diversity (�=0.00067)
calculated across the 50 loci using PopGenome. Our
prior on root � was G(1, 535), with a mean of 0.00187,
which is based on a 170,000 year coalescence time for
humans (Ingman et al. 2000) and an average mutation
rate of 1.1×10−8 mutations per site per generation
(Roach et al. 2010). We also tried a root � prior of G(1,
3500), which was used by Yang and Rannala (2010). All
other aspects of the analysis followed those used with
the empirical datasets above.

Inferring Species Delimitation
The operational criterion that PHRAPL uses for

identifying candidate species (i.e., evolutionary
lineages) with model selection is similar to that used by
other approaches that apply a multispecies coalescent
framework for species delimitation (O’Meara 2010;
Yang and Rannala 2010; Ence and Carstens 2011).
Typically, the process of speciation proceeds when
genetic isolation among populations is sufficiently
strong and long lived such that the rate at which
mutations differentially accrue among populations
exceeds the rate at which gene flow disperses them.

In PHRAPL, we thus identify groups as candidate
species when the genetic divergence resulting from this
process becomes statistically demonstrable in a model
comparison framework: if a two-species model garners
substantially more support than a single-species model,
two species are inferred.

However, complications to delimitation decisions
arise when a statistically favored two-species model also
contains a migration parameter (an IM model). First,
the detection of gene flow among groups suggests that
reproductive isolation may not be complete. Under a
strict biological species concept, this would cause one
to conclude that a single species is present, despite
there being two evolutionary lineages in the inferred
model. However, many if not most biologists would
argue that speciation may still proceed in the face of
some gene flow under certain conditions (Coyne and Orr
2004). Moreover, although gene flow was important over
the course of divergence, reproductive isolation may
have recently developed. So if some gene flow may be
permissible among diverging species, inferences about
species boundaries will often depend on the amount
of gene flow in the supported model. For example,
lineages that are inferred to share migrants at a very high
effective rate (e.g., Nm�10) should likely be considered
a single species (Wright 1931). Further difficulties arise
because both the gradual process of allele sorting due
to drift and allele sharing due to migration can result in
similar patterns of gene tree nonmonophyly (Funk and
Omland 2003), potentially confounding these processes.
This may bias estimates of migration and coalescence
time under some conditions, resulting in poor model
choice (discussed later on in this article).

For these reasons, discrete model selection alone
may not always provide the best estimate of lineage
independence when both gene flow and genetic drift
are modeled. When inferring species limits using
PHRAPL, it is thus important to also consider parameter
estimates derived from a grid search, as these values are
informative of the species boundaries we aim to infer. To
facilitate this, we developed the genealogical divergence
index (gdi), which can be calculated from estimates of
migration rate and coalescence time obtained from a
PHRAPL analysis. This index provides an estimate of
the overall degree of genetic divergence between two
taxa due to the combined effects of genetic isolation
and gene flow and is useful in the interpretation of the
results from model selection and parameter estimation.
If one samples two gene copies from species 1 and one
gene copy from species 2, then let G1 be the resulting
genealogy in which the two gene copies from species
1 are sister to each other. We define the unscaled GDIu
to be

GDIu =P(G1|M1,M2,t)
where M1 and M2 are bi-directional migration rates
because the divergence of the species at time t. Rather
than analytically calculating GDIu, we approximate it
using ms (Hudson 2002) such that

gdiu =observed(GDIu)
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For a given M1,M2, and t, we iteratively simulate
coalescent trees with three gene copies under the two-
taxon species tree model described above, and then
calculate the proportion of simulated trees in which the
two gene copies originating from species 1 are sisters.
The index is then scaled to be between 0 (panmixia) and
1 (strong divergence) using

gdi=[observed(gdiu)−min(gdiu)]/[max(gdiu)

−min(gdiu)]
where min(gdiu)≈1/3 (with three tips, under panmixia,
species 1 monophyly is expected ∼1/3 of the time)
and max(gdiu)=1 (with extreme isolation, species 1 will
always be monophyletic). The gdi, along with confidence
intervals, can be calculated using the CalculateGdi
function within PHRAPL.

The gdi is similar to the genealogical sorting index
(gsi; Cummings et al. 2008) in that it calculates the
degree of nonmonophyly in a set of gene trees, and in
fact these two indexes are highly correlated (R2 =0.9)
and perform similarly if used to delimit species based
on a range of theoretical cutoffs (see Supplementary
Figs S3a, b). However, the two indexes differ in two
important ways. First, PHRAPL aims to delimit species
while simultaneously understanding those aspects of
demographic history that have given rise to these
groups, and the gdi explicitly incorporates these inferred
processes (in the form of estimated parameter values).
The gsi, in contrast to this, measures divergence directly
from genetic data, and thus does not presuppose any
information about the underlying causes of divergence.
Secondly, the gdi measures divergence between two focal
sister populations or groups, which is the level at which
delimitation questions arise. However, the gsi measures
the exclusivity of a focal taxon relative to the entire tree,
and thus the degree of divergence inferred for that taxon
can depend on patterns of genetic structure within other
parts of the tree (Winter et al. 2016).

The gdi is continuous (as is the speciation process
itself), and thus, while informative of where a taxon
lies on the path to speciation, it is not an ideal
metric by which to delimit species. It is, however, a
useful way to explore how accurately PHRAPL can
delimit species when this delimitation is solely based
on parameter estimates rather than on model selection.
We thus calculated the gdi for each simulated treatment
using model-averaged estimates of coalescence time and
migration rate. We then compared species delimitation
based on these values, assuming a range of gdi
“delimitation cutoffs,” with gdi-based delimitation
derived from the generating models’ parameter values.

Availability
PHRAPL is written in R and Perl and can

be downloaded from https://github.com/omeara/
phrapl. A tutorial is included in Supplementary
Materials.
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FIGURE 3. Model selection results for simulated datasets using
PHRAPL (a, b, e, and f) and BPP (c, d) where �=0.005. Panels (a,
b) show the proportion of replicate PHRAPL analyses supporting
divergence between species A and B when datasets were analyzed
against isolation-only models (models in Fig. 2a, b). Proportions
are shown across datasets produced under increasing coalescence
time t (x-axis), increasing migration rate M (top to bottom), and
increasing numbers of loci (line solidity). Panels (c, d) show these same
proportions when the datasets are analyzed using BPP. Panels (e, f)
show results when datasets were analyzed under an expanded model
set that includes migration (models in Fig. 2a–c). In contrast to the
other plots, plots in panel (f) give the proportion of replicate analysis
in which the true isolation plus migration model was supported.

RESULTS

Simulation Testing
Performance of PHRAPL for species delimitation.—(a)
Analyzing data simulated with and without migration
using isolation-only models.

In the case where true coalescent time (t) is zero,
PHRAPL supported the single-species model in 96% of
cases with one locus and in 100% of cases with more
than one locus (where the inferred model is the one
receiving the highest AIC weight). Thus, when only
isolation is considered, PHRAPL does not tend to infer
two species when a single panmictic lineage is present
(Fig. 3a). A single species was also typically favored
when t was small (t�0.125 when �=0.005; Fig. 3a;
t�0.05 when �=0.025; Supplementary Fig. S4a) or
regardless of t when migration rate (M) was high (M�5;
Fig. 3b and Supplementary Fig. S4b). The number of loci
analyzed did not strongly affect performance, aside from
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slightly poorer sensitivity when data from a single locus
were analyzed.

(b) Analyzing data simulated with and without
migration using both isolation-only and IM models.

When data generated under IM models were analyzed
using both isolation-only and IM models, the true IM
model was supported in ∼100% of replicates, if 50 loci
were sampled and migration was not very high (M<10)
(Fig. 3f and Supplementary Fig. S4d). When fewer loci are
analyzed, the true model was identified in cases where
migration was moderate to low (M�2) and divergence
was moderate to high (t�0.125). However, results were
poor in all cases when data from a single locus were
analyzed (Fig. 3f and Supplementary Fig. S4d).

When data were generated under isolation-only
(M=0), but analyzed using both isolation-only and
IM models, the amount of population divergence
required by PHRAPL to delimit lineages increased from
∼0.125–0.25 4N generations (obtained with an isolation-
only model set; Fig. 3a) to ∼0.25–2 4N generations,
depending on the number of loci (Fig. 3e) or value of �
(Supplementary Fig. S4c). At lower values of divergence,
IM models that pair high rates of migration and
overestimated coalescence times were usually favored
over models that posit either isolation-only or a single
AB lineage. Even in the case where the generating model
includes t=0, an IM model—rather than the single-
lineage model—was supported in between 4% (1 locus)
and 44% (50 loci) of replicates. This support for spurious
IM models likely results in part from similarity in gene
tree patterns produced by genetic drift and gene flow. For
example, a model positing high migration and inflated
divergence may yield a degree of tree nonmonophyly
similar to that produced by the true generating model of
recent divergence in isolation.

Because parameter estimates can be biased for
IM models under some conditions, we generally
recommend that the gdi (or some other metric that
provides a good measure of the overall level of genetic
divergence across taxa) be used to help interpret
PHRAPL results when an IM model is inferred. When
species delimitation was based on the gdi calculated
from simulated and estimated parameter values, they
were generally in agreement across a range of cutoffs
(Fig. 4 and Supplementary S5), suggesting that gdi
values based on PHRAPL parameter estimates are
good approximations of gdi values derived from
the generating model. When considering cutoffs, we
selected an upper value (above which two lineages are
inferred) and a lower value (below which a single lineage
is inferred) to allow for an ambiguous inference when
intermediate values are observed. This accommodates
the gray zone that is inherent to the continuous
speciation process (de Queiroz 2007). However, note
that the selected cutoffs used are completely arbitrary
and meant only to explore sensitivity of performance to
the chosen set of values. When delimitation inference
from simulated and estimated indexes disagreed, this
was usually in the form of a tendency toward either
excessive or insufficient confidence in the number of

species. Categorical inference of the wrong number of
species did not occur (Fig. 4 and Supplementary Fig. S5).

Comparing the performance of PHRAPL with that of BPP.—
With 50 loci, BPP delimited species A and B in a high
proportion of replicates (i.e., at or near 100%) regardless
of the amount of migration or the depth of coalescence
time, as long as t>0 (Fig. 3C, D and Supplementary
S4C, D). With fewer loci, the frequency of support
for delimitation of A and B dropped with increasing
migration. When t=0 in the generating model, BPP
always supported a single lineage. Note that results were
similar regardless whether the proportion of analyses
supporting the true model or the average posterior
probability of the true model was used (data not shown).

When comparing BPP delimitation inference under
the best-case scenario (i.e., the case of 50 loci) with
the true underlying delimitation for each dataset (as
defined by the range of gdi cutoffs), BPP increasingly
overestimated the number of species with diminishing
time to coalescence and with growing rates of migration
(Fig. 4). Once migration is high (M�5), nearly all BPP
analyses infer two species (for A and B) whereas nearly
all gdi values from the generating models indicate a
single species. Thus, BPP is effective at identifying
population isolation, even given levels of gene flow that
are expected to be homogenizing (Wright 1931).

Empirical Examples
Scincella lateralis.—Two similar models contained most
of the AIC weight in the PHRAPL analysis: both
models include three species with a sister relationship
between the adjacent Western and Central populations,
including either constant migration (average wAIC =
0.28) or migration under secondary contact (average
wAIC = 0.25) between nonsister Central and Eastern
populations (Fig. 5; Supplementary Table S6). These
inferred relationships and migration models are similar
to those inferred in a previous study using species
tree (*BEAST) and migration-divergence (IMa2) analyses
(Jackson and Austin 2012). In that study, migration
was also found to only occur among geographically
adjacent populations—appearing to be particularly
strong between Central and Eastern groups—and to be
especially important in the recent past.

In contrast, all BPP analyses supported three species
with a sister relationship between the Central and
Eastern populations. Average posterior probability was
1.0 for both the delimitation and the topology. This
alignment between Central and Eastern populations
could in part be due to high gene flow between them,
which is registered as recent coalescence by BPP.

Sarracenia alata.—In PHRAPL, most of the AIC weight
(average wAIC = 0.89) supported one of three two-
species models, where the two Western populations
were collapsed into a single lineage: one model included
constant migration between the two lineages (average
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wAIC = 0.25), another model included migration upon
secondary contact (average wAIC = 0.25), and the last
model excluded migration (average wAIC = 0.40; Fig. 5).
BPP supported a three-species model in all replicate
analyses, with the two Western populations placed sister
to one another (Fig. 5; Supplementary Table S8). Average
posterior probability for the tree and number of species
was 1.0 across replicates.

Homo sapiens.—The single species model garnered the
most support in PHRAPL (Fig. 5; Supplementary Table

S8). The ratio of the average wAIC of the single species
model (0.14) to that of the next best model was 2.64,
indicating that this model had over twice the support
of any other. In contrast, BPP supported a four-species
model in all 10 replicate runs, regardless of which of
the two root � priors we used, with an average posterior
probability (pp) of 0.99 or 1.0 for the small or large root
� prior, respectively. All but one replicate run supported
(((Asia, America), Europe), Africa) with an average pp
of 0.92. The remaining replicate supported (((Europe,
America), Asia), Africa) with a pp of 0.93.
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DISCUSSION

Populations that are considered to be candidate
species will typically exhibit some evidence
of genetic isolation, either in the form of
phenotypic/behavioral/genetic differences or
geographic separation. However, in recent years, it
has become clear that species divergence can occur in
the presence of gene flow (Hey 2006; Nosil 2008) and
that taxa which have diverged in geographic isolation
may come into secondary contact and resume genetic
exchange (e.g., Zamudio and Savage 2003; Noonan and
Gaucher 2006). Such opportunities for gene flow among
groups not only can obscure the true evolutionary
trajectory signaled by an observed level of divergence,
but also can challenge our notions of what constitutes a
species.

Despite the prevalence of gene flow in nature and
its relevance to speciation, most methods aimed at
inferring species boundaries do not explicitly account
for it. Consequently, if two distinct species exchange
alleles, a model that ignores migration may attribute
the resulting increase in genetic similarity to either more

recent divergence or higher effective population size in
comparison to the actual values (e.g., Leaché et al. 2014).
This may cause an analytical method to falsely lump two
species into one. Alternatively, if the genetic signature
of substantial gene flow between two once-divergent
taxa is ignored or misattributed in a model, a single
lineage composed of two highly connected populations
may be falsely split into two species. Thus, given the
central role of gene flow in the conceptual diagnosis of
species, failing to account for it when delimiting species
in practice may either obscure the mechanisms that
underlie an observed level of divergence among taxa,
or even result in high confidence for the wrong number
of species.

Using PHRAPL for species delimitation is therefore
appealing because this method can consider non-nested
delimitation models that include both isolation and
migration parameters. When isolation-only and IM
models were considered, we found that PHRAPL was
generally successful at inferring the history of divergence
with gene flow, given low to moderate migration (M�2)
and adequate (>10 loci) data. Correct detection when
migration rates are high requires more (>50 loci) data.
Model selection was less accurate when the generating
model excluded migration, unless coalescence time was
deep (t�2). In these instances, PHRAPL tended to
attribute nonmonophyly that was actually caused by
incomplete lineage sorting to nonmonophyly produced
in part by gene flow, and thus was biased in favor of
IM models with high migration over true models of
recent isolation. It is not clear why the more complex
spurious model is favored over the true simpler model
in this portion of the parameter space, but if one blindly
uses model selection to delimit species in these cases,
one would wrongly infer distinct species. This bias
can be somewhat reduced by capping migration at a
moderate or low value. For example, capping M at 2 in
the parameter grid results in 100% support of a single-
species model when true t=0. However, at moderate
values of t, a bias toward selecting IM models remains
(Supplementary Fig. S9). The practical nonidentifiability
of incomplete lineage sorting and gene flow, while
a difficult challenge whenever genetic divergence is
modeled (e.g., Heled et al. 2013), is particularly expected
when branch lengths are excluded from the data (as in
PHRAPL), given that a lot of information concerning
the degree of incomplete lineage sorting is contained
in the branch lengths (Pamilo and Nei 1988; Maddison
1997). Thus, when jointly inferring species delimitation,
migration, and divergence, an undertaking that is
currently not available in a full likelihood or Bayesian
framework, some regions of practical nonidentifiability
will likely exist.

When delimiting species using PHRAPL, particularly
if an IM model is inferred, it is important to not
only consider the best supported model, but also
parameter estimates, as these help one to understand
the degree of divergence within a favored model
and the processes that underlie this divergence. For
example, if a supported IM model includes a high
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FIGURE 6. Contour plot showing the relationship between parameter values (coalescence time and migration rate) and the gdi. For the three
empirical datasets analyzed in this study, model averaged parameter estimates from PHRAPL based on the first (1), second (2), and third (3) splits
in the best supported tree are shown in enlarged font. Because ancestral migration was not included in the analyzed models, when calculating
the gdi for the root node, ancestral migration was assumed to equal contemporary migration. For comparison, estimated values for several other
taxa were also plotted. First, a point for the split between Homo and Pan is shown; coalescence time (t) for this split is based on 8.5 million
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rate of migration and a recent divergence time, most
researchers will consider the taxa to be a single lineage.
Conversely, if that IM model is accompanied by a low
migration rate and a more ancient divergence time,
most would instead infer separate lineages. This follows
the argument presented by Hey and Pinho (2012), that
divergence time and migration rate should jointly be
considered when delimiting species. Furthermore, it
is important to estimate parameters in a manner that
accounts for the possibility that gene flow and genetic
drift will be confounded. One approach toward this
is to co-estimate divergence and gene flow parameters
using a full likelihood or Bayesian method such as
IMa2 (Hey 2010). Another approach, which can easily
be carried out as part of a PHRAPL analysis, is to
calculate the gdi for pairs of taxa, which ignores the
relative contributions of genetic drift and gene flow
to topological patterns. By combining estimates of
coalescence time and migration rate, this index yields
a metric of genetic divergence that can help to inform
delimitation inference.

As a way to observe the behavior of the gdi across
parameter space, we plotted gdi values for the three
empirical datasets analyzed on a contour plot, where
gdi values were calculated for both nodes in each best
supported tree (i.e., t1 and t2) (Fig. 6). For comparison, we
have also plotted estimated parameter values from the
split between Pan and Homo, as well as median values of
the gdi based on migration rates and coalescence times
for several taxonomic groups culled in a meta-analysis
of 178 datasets (Pinho and Hey 2010). Values from
recognized species were plotted separately from values
estimated from “populations” not currently recognized
as species. Although there exists no definitive boundary
between gdi values for “populations” and “species”
(Fig. 6 and Supplementary Table S10), which reflects
the continuous nature of the speciation process, some
guidance in regards to using the gdi to help infer
species boundaries can be deduced. First, datasets from
all animal populations and species have median gdi
values of 0.30 and 0.68, respectively. This suggests a
median gdi threshold ∼0.3−0.7 dividing populations
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FIGURE 7. An example decision tree for using PHRAPL to delimit species with genetic data.

and species in animals. For plants, the median gdi for
populations (0.46) is actually a little higher than the
median value for species (0.41), offering little evidence
for a definitive threshold. When analyzing as many as
50 simulated loci, the signature of a nonzero divergence
time disappears when the actual divergence time t<
0.25 (upper left plot in Fig. 3), which corresponds with
a gdi around 0.4 (Fig. 6). When gene flow is added
to the generating model (bottom three plots on the
left in Fig. 3), this divergence time threshold at which
nonzero coalescence time is detected increases, such that
two species are never inferred with high AIC weight
when the gdi is below ∼0.3. Finally, although there
is broad gdi overlap between populations and species
when looking at individual datasets (Supplementary
Table S10), the upper quartile range of gdi values
observed for groups identified as “populations” in the
178 empirical datasets never rises above 0.66, suggesting
that a gdi value above ∼0.7 signals that speciation has
likely occurred. Thus, as a rule of thumb, gdi values
less than 0.2 suggest that a single species exists; gdi
values above 0.7 suggest there are two species. Values
in between indicate ambiguous delimitation (but of
course, with values near 0.2 and 0.7 providing stronger
or weaker evidence for a single species, respectively),
which reflects the reality that there exists a speciation
gray zone, where a definitive answer cannot easily be
found.

Under what conditions should the gdi be used when
delimiting species with PHRAPL? (Fig. 7). The initial
step should always be to perform a grid search to
infer the best demographic/delimitation model(s) as
well as parameter values. If an isolation-only or single
species model is inferred, delimitation conclusions can

typically follow directly from model selection. However,
if inference of a multispecies model depends on using
a very large number of loci, one can calculate the gdi to
ensure that its value is consistent with a multispecies
model being not just statistically significant, but
biologically significant as well. If an IM model is inferred,
delimitation conclusions are less straightforward. In
these cases, one should calculate the gdi among sister
groups of interest (which requires both the species tree
and parameter estimates from the grid search) to inspect
the overall level of divergence produced by isolation and
gene flow. If that value is very small or large (e.g., <0.2
or >0.7), this could be interpreted as genetic evidence
for no speciation or speciation, respectively. However, if
the value is intermediate, the conclusion will necessarily
be ambiguous and researchers should consider other
sources of data (e.g., ecological, morphological, etc.). For
example, in the case of S. lateralis, for which an IM model
was supported, gdi values were relatively low (0.17 for t1).
Thus, although genetic isolation (with migration) was
inferred for these lineages, in part due to relatively
high rates of migration, the overall level of divergence
estimated is more similar to levels observed within
populations of a single species than to levels observed
among different species (Fig. 6). This, in combination
with the fact that no morphological differences have
been observed across the range of S. lateralis (e.g., Lewis
1951; Johnson 1953; Brooks 1967), suggests that these
distinct populations may best be considered a single
lineage. In contrast, in the carnivorous plant S. alata,
where an IM model was also inferred, gdi values for
t2are somewhat high (0.75), and above values observed
in most plant species (Fig. 6), providing genetic evidence
for the delimitation of these two groups.
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Comparisons with BPP
As observed here and elsewhere (Zhang et al. 2011;

Camargo et al. 2012; Yang and Rannala 2015), BPP is
a very powerful method for detecting genetic isolation,
even when that isolation has occurred recently and in the
face of high gene flow. This power likely comes from the
full likelihood-based multispecies coalescent model that
BPP implements, which allows the program to harness
information regarding both species relationships and
coalescence times while accounting for uncertainty in
estimated gene trees. But detecting genetic isolation
is not the same thing as delimiting species. With
enough loci, it is possible that even a short history of
genetic isolation (e.g., t=0.05) combined with a high
rate of genetic exchange (e.g., M=10) will yield an
inference of speciation when using BPP (Fig. 3d), yet
when migration rates are so high, in what sense has
genetic isolation taken place? Once M is greater than
∼2, phylogenetic divergence does not appear to form
(Fig. 6), nor is it expected to (Wright 1931). Thus, that
BPP delimits taxa that share genes in excess of this rate
suggests that the method is prone to oversplitting in
the face of gene flow, a tendency illustrated by BPP
inference from a human dataset. Gene flow estimates
among human populations vary, but can be high among
non-African populations (e.g., Garrigan et al. 2007; Li
et al. 2008), contributing to high amounts of shared
variation among human populations (Yu et al. 2002;
Wall et al. 2008). Moreover, all the available genetic
evidence shows that modern humans are members of a
single, relatively young species, for which there has not
been nearly enough temporal or geographical separation
for species-level differences to form. Nevertheless,
BPP wrongly delimits four distinct human lineages,
demonstrating that the program is detecting population-
level divergence rather than true lineage independence.
Given these results from human data, we should treat
with caution BPP’s delimitation of the two Western
pitcher plant populations, as the estimated gdi between
these populations was extremely low (gdi=0.0014). To
reduce the risk of oversplitting using BPP, one might
consult posterior distributions of parameters (e.g., � and
�) or use the “� threshold” approach (Yang and Rannala
2010), whereby species are only delimited if there is
a high posterior probability that a divergence time, �,
is above an assumed threshold value. When Yang and
Rannala (2010) used the � threshold approach to delimit
human populations (which, to our knowledge is not
the typical BPP algorithm used), they inferred only a
single species. When we analyzed our human dataset
using the � threshold method, we inferred a single
species as well (see Supplementary Methods S11). While
a � threshold can help to circumvent BPP’s tendency
to oversplit, assuming a satisfactory threshold can be
devised, it is not likely to perform well when gene flow is
present in the dataset, as this will likely drive estimates
of � downward. The gdi has an advantage over � in
these cases as it incorporates both isolation and gene
flow.

In a previous study of the effects of migration on
delimitation inference using BPP, Zhang et al. (2011)
reported that the method tended to lump species when
migration rates were high, in contrast to our study, which
reports the opposite. The discrepancy likely results from
the fact that the amount of migration simulated by Zhang
et al. that resulted in consistent lumping of species by
BPP was four times higher than the highest amount of
migration we simulated here (4Nm = 10 in our article
rather than 4Nm = 40). We did not simulate higher
values because once 4Nm >2, we found that divergence
of populations (as measured from topologies) effectively
never formed, regardless of how long ago divergence
commenced (Fig. 6). Another discrepancy is that Zhang
et al. only simulated up to 10 loci, in contrast to our 50.
Given that the likelihood that BPP will delimit species
increases with the number of loci (Fig. 3), had Zhang
et al. simulated more loci, they may have inferred distinct
species even in the case where migration was set to 4Nm
= 40. Given that our results are generally consistent
with those of Zhang et al. (2011) in the areas over which
our parameter spaces overlap, we assume that we also
would have observed lumping of species by BPP with
10 loci and 4Nm = 40. The important point is that
a delimitation method should be lumping species not
only at 4Nm = 40, but at lower migration rates as well
(e.g., at 4Nm = 10, a value which was not simulated by
Zhang et al. 2011), and regardless of the number of loci
used.

PHRAPL is clearly not as powerful as BPP in detecting
genetic isolation. For example, when PHRAPL applied
the same models considered by BPP to simulated
data, the method only supported lineages A and B
as two species once underlying divergence reached a
certain depth (∼t�0.25) or once migration rate fell
below a certain value (M=0.5) (Fig. 3a). Although the
specific thresholds will change to some extent with
the parameter grid used to analyze a dataset, this
inability to infer distinct species given extremely recent
isolation or high migration is a desirable property
for any method that delimits species (Carstens et al.
2013), and it suggests that PHRAPL errs on the side
of failing to delimit actual species rather than falsely
splitting a single species into multiple lineages. This
conservative inference may be appropriate given the
legal ramifications of the species category (e.g., Fujita
et al. 2012) and its use in a wide range of biological
disciplines. However, it also means that truly separate
species will sometimes be missed, which can also have
negative conservation implications. As with all species
delimitation methods, we recommend using PHRAPL
in concert with natural history information and other
available approaches when doing alpha taxonomy (e.g.,
Bacon et al. 2012; Hendrixson et al. 2015).

CONCLUSION

When the goal is to delimit species, one usually seeks
a simple binary answer to the question, “one species or
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two?” However, this result may not always be achievable.
First, this is counter to the spirit of multimodal inference
(e.g., Burnham and Anderson 2002), which underlies the
model selection framework in PHRAPL (Jackson et al.
in press). Multimodel inference seeks to quantify the
support for the models given the data. In some cases,
the optimal model will receive the vast majority of the
support, and in these cases the inferences regarding
species limits may be straightforward. However, in cases
where support across models is equivocal, researchers
should clearly assess their sampling (of individuals
and/or loci) and ask whether it is adequate for the
question at hand. Second, an understanding of the
evolutionary processes giving rise to divergence is
critical when delimiting species (Hey and Pinho 2012),
and thus decisions about species boundaries resulting
from model selection should not be made without also
considering the relative and absolute importance of
isolation and migration within an inferred model.

One limitation of the method is that PHRAPL assumes
that both the gene trees and population assignments are
specified without error (i.e., it is a validation approach,
sensu Ence and Carstens 2011). The degree to which
PHRAPL delimitation and model selection are robust
to data error and ambiguity is currently unknown
and represents an important area of further research
(although note that the analyses here used gene trees
inferred from simulated sequence data, not true gene
trees). One should thus ensure that accurate gene trees
and population assignments are used.

Although in this study we have focused on
populations shaped by isolation and symmetrical
migration, additional parameters will likely be
necessary to adequately model the history of many
species. PHRAPL models can be constructed that
include additional complexities such as different
population sizes, population growth or contraction,
and asymmetrical migration. The performance of these
models will be a worthwhile subject of future research.

PHRAPL is a valuable new approach for investigating
species boundaries in that it allows one to compare
a large number of demographic models while jointly
considering both gene flow and population divergence.
This broadens the relevant biological complexity
that can be considered, and will particularly be a
useful delimitation method for biological systems in
which divergence with gene flow has likely been
important.
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